S.N.D.T. WOMEN'S UNIVERSITY

Proposed Syllabus for

M.Sc. Programme

Subject: Analytical Chemistry

Revised-2014

Eligibility: B. Sc. with 5 units of 4 credits each (Annual System) or 32 credits (Semester System) of Chemistry.

Course Objectives:

- a) To provide access to the field of higher education for women.
- b) To provide Job oriented course to meet the socio-economic demands.
- c) To arrange internship program to provide opportunities for experiential learning.
- d) To enable students for research in emerging areas of study.
- e) To achieve excellence in the academic disciplines, research and extension activities through emphasis on "Quality in every activity".
- f) To train and develop scientist and technologist for industries and academics.

FACULTY : Science TOTAL CREDIT : 96
COURSE : Masters in Analytical Chemistry (M.Sc.)

SEMESTER I

					Total	
Paper	Title	Hrs/wk	Internal	External	Marks	Credit
102101	Fundamentals of Analytical Chemistry	4	50	50	100	4
102102	Food & Biochemical Analysis	4	50	50	100	4
102103	Environmental Science	4	50	50	100	4
102104	Drug Laws and Packaging	4	50	50	100	4
102201	Practical Analytical Chemistry	8	50	50	100	4
102202	Practical Food and Biochemical Analysis	8	50	50	100	4
				Total	600	24

SEMESTER II

					Total	
Paper	Title	Hrs/wk	Internal	External	Marks	Credit
202101	Electro Analytical & Spectroscopic Methods	4	50	50	100	4
202102	Pharmaceutical Analysis	4	50	50	100	4
202103	Cosmetics Formulations & QC	4	50	50	100	4
202104	Research Methodology	4	50	50	100	4
202201	Practical Spectroscopy and Chromatography	8	50	50	100	4
202202	Practical Pharmaceutical Analysis	8	50	50	100	4
				Total	600	24

SEMESTER III

					Total	
Paper	Title	Hrs/wk	Internal	External	Marks	Credit
	AdvancedChromatography &Spectroscopic					
302101	Methods	4	50	50	100	4
302102	Organic Analysis	4	50	50	100	4
302103	Microbiological Methods of Analysis	4	50	50	100	4
302111	Elective Paper	4	50	50	100	4
302201	Practical Advanced Spectroscopic Methods	8	50	50	100	4
302202	Practical Organic Analysis	8	50	50	100	4
				Total	600	24

SEMESTER IV

					Total	
Paper	Title	Hrs/wk	Internal	External	Marks	Credit
402101	Advanced Analytical Techniques (9 wks)	4	50	50	100	4
402201	Practical Advanced Anal. Techniques (9 wks)	8	50	50	100	4
402301	Research Project (9 wks)	12	100	100	200	8
402302	In-plant training (6 weeks)	40	100	100	200	8
				Total	600	24

25 Marks, 1 credit, 15Hrs (1 lecture=1 hour)

Elective

1.(302111) Industrial Products & Forensic

Analysis

2(302112). Medicinal Chemistry

3.(302113) Biosensors, Agrochemicals & Organic

Polymers

Methodology

- 1. Lectures, Tutorials
- 2. Self study/ Internet/ Websites
- 3. Home assignments

Internal Assessment (Any One)

1. Presentation on one of the topic from the

text

- 2. Community extension work
- 3. Field survey

Code: 10210	1	Title: Fundamentals of Analytical Chemistry	Credits: 4
Objectives:1)	Toundersta	andthe basic concepts of analytical techniques.	
ii) Able to pre	epare stand	dard solutions.	
iii) To acquire	e knowledg	e of theoretical concepts of volumetric techniques.	
iv) To develo	p expertise	in collection, preparation and preservation of samples.	
v) Participant	ts will use s	statistical aids to compile, tabulate, evaluate and present a	nalytical data.
Paper I			60 Hours
Unit I	Analytic	cal Basics:	15 Lectures
	a) Analy	tical chemistry - Scope, functions and analytical process.	
	b) Samp	oling: Collection, Preservation and preparation of sample,	
	Techniq	ues of sampling solids, liquids and gases; Operation of	
	dryinga	nd preparing a solution of the analyte.	
	c) Chem	nometrics	
	Topics t	o be covered in the form of numerical	
	problen	ns:Concentration of a solution based on volume and mass	
	units, C	alculation of ppm, ppb and dilution of the solutions,	
	Concep	t of mmol and kgmol, Stoichiometryof chemical	
	reaction	ns, Limiting reactant,Theoretical and practical	
	yield,Ca	lculation of pH of acids, bases and acidic and basic	
	buffers;	Concept of formation constant, Stability and instability	
	1		1

 $constant, Stepwise\ formation\ constants.$

SEMESTER I

Unit II	Volumetric Methods of Analysis Introduction to Volumetric Methods: Calibration of volumetric apparatus, Primaryand Secondary Standards, Principles of volumetric analysis, Acid-base titration. Titration in non-aqueous solvents, Complexometric titrations, Precipitation titrations, Redox titrations, Theoretical aspects of titration curves and end point evaluation, Choice and suitability ofindicators in each case.	15 Lectures
Unit III	Separation Methods: a) Solvent extraction: Efficiency of extraction, Selectivity of extraction, Extraction system, Method of Extraction, applications. b) Solid Phase Extraction: Principle, process and applications. c)Planer Chromatography: Principles, Classification of chromatographic techniques, Techniqueand applications of paper chromatography, Thin–layer chromatography. d) HPTLC conversion of TLC to quantitative measurements, densitometric detectors, fluorimetric detectors.	15 Lectures
Unit IV	Statistics: Evaluation of Analytical Data, Precision and Accuracy, Types of Errors, Normal Distribution Curve, Standard deviation, Confidence limit. Graphical presentation of result- Method ofaverage, Method of Linear least square, Significant figures. Statistical aid to hypothesis testing: t-test, F-test, chi- 2 test, Correlation.	15 Lectures

- 1. Skoog D.A., West D.M., Holler and Crouch, **Fundamentals of Analytical Chemistry**, Cengage Learning, Wiley-VCH Weinheim, 2011.
- 2.J. Mendham, R.C.Denney, J.D.Barnes, M.J.K. Thomas, Vogel's **Quantitative Chemical Analysis**, Pearson Education, ELBS,6th Edition, 2009.
- 3.Fifield F.W. and KealeyD, **Principle & Practice of Analytical Chemistry**, Blackwell Science,5th Edition, 2000.
- 4.Gary D. Christian, Purnendu Dasgupta, Kevin Schug, **Analytical Chemistry**, John Wiley, 7th Edition, 2013.
- 5. Douglas A. Skoog, F. James Holler and Stanley R. Crouch, **Principles of Instrumental Analysis**, Cengage Learning, 6th Edition, 2006.
- 6. Ahuja & Jespersen, Modern Instrumental Analysis, Elsevier Science, 1st Edition, 2006.
- 7. D.C. Harris, **Exploring Chemical Analysis**, W.H. Freeman, 3rd Edition, 2005.

- 8. Edited by Pradyot Patnaik, **Dean's Analytical Chemistry Handbook**, McGraw Hill, 2nd Edition, 2004.
- 9. Klaus Danzer, Analytical Chemistry, Springer-BBH, 2007.
- 10. A.L. Underwood, Quantitative Analysis, Prentice-Hall of India Pvt Ltd., 1999.

	SEMESTER I	
Code: 102102	Title: Food and Biochemical Analysis	Credits: 4

Objectives: i)To understand regulation and legislation related to food safety.

- ii) Able to compare quality parameters of various food products.
- iii) Able to perform methods of biochemical analysis.
- iv) Participant will be able to use methods of food analysis for various products.
- v) This knowledge will enable them to perform better in food industries.

Paper II		60 Hours
Unit I	a) Regulations & Legislation of Food:	
	Norms, Rules and Regulations, Food Safety and standards Act	15Lectures
	2006, Statistical Process Control, Process Quality and Control	
	Limits.	
	b) Food Additives& Preservatives	
	Characteristics of Food Preservatives, Anti-oxidants, Emulsifiers	
	and stabilizers, Improvers and Bleaching agents, Artificial	
	sweetening agents.	
Unit II	a) Food Quality Parameters:	
	Composition & Impurities in Food, Common Adulterants found in	
	food and Tests. Determination of Moisture, Ash value, Calorific	15Lectures
	value of foods, Saponification value, Acid value, Iodine value,	
	Peroxide value of edible oil.	
	b) Food colors	
	Role of permitted colors, Classification of food colors with	
	chemical structures, Synthetic colors and natural colors,	
	Advantages and Disadvantages of food color.	
Unit III	a) Biochemical analysis:	
	Analysis of blood sample, Serum plasma, Urine test, Blood sugar,	15Lectures
	Electrolytes in body, Substance Glutamic-Oxaloacetic	
	Transaminase Test (SGOT), Substance Glutamate Pyruvate	
	Transaminase (SGPT), Sputum. b) Body profile:	
	Liver profile, Renal profile, Thyroid profile.	
Unit IV	a) Food analysis:	

Wheat flour, Milk & Milk products, Tea & Coffee, Honey, Jam &	
Jelly.	15Lectures
b) Bread, Biscuits, Ice Cream, Butter, Cheese, Soft drinks,	
Alcoholic beverages, Cereals and pulses, Confectionery, Fruits,	
Vegetable, Egg, Fish, Meat.	

- 1.George Latimer, Official Methods of Analysis of AOAC International (AOAC = Associate of Analytical Communities), Publication AOAC, 19th Edition, 2012.
- 2. Suzanne Nielson, Food Analysis, Springer, 2010.
- 3. Yeshajahu Pomeranz, Meloan Editor, Food Analysis Theory & Practice, Springer, 2002.
- 4. Kirk Sawyer, **Pearson Composition & Analysis of Food**, Longman Scientific & Technical, 9th Edition, 1992.
- 5. D. B. Wetzel & G. Charalambous, **Instrumental Methods in Food and Beverages Analysis**, Elsevier Publication, 1998.
- 6. M.B. Jacob, Chemical Analysis of Food and Food Products, CBSPB Publisher, 3rd Edition, 2006.
- 7. M. L. Nollet, **Handbook of Food Analysis**, CRC Press, 2nd edition, 2004.
- 8. SemihOtles, Handbook of Food Analysis Instruments, CRC Press, 2008.
- 9. V. Villaveccha, Treatise on Applied Analytical Chemistry, Methods and Standards for the Chemical Analysis of Industrial and Food Vol I & II, Nabu Press, 2012.
- 10. Editor Dr. Pico Yolanda, Chemical Analysis of Food: Techniques and Applications, Academic Press, 2012.
- 11. Semih Otles, **Methods of Analysis of Food Components and Additives**, CRC Press, 2nd Edition, 2011.

	SEMESTER I				
Code: 102103	Title:Environmental Science	Credits 4			
ii) To compare o	Objectives:i)To identify different types of environmental pollutants and their global impact. ii) To compare causes and effects of pollutants on human life. iii) To correlate various methods for control of environmental pollution. iv) Acquireknowledge to promote better environmental conditions.				
Paper III		60 Hours			

UNIT I	a) Air pollution: Sources and sinks of gas pollutants, classification& effects of air pollutants on ecosystem, Air pollution problems in India, Pollution problems in industrial area, Global air pollution problems, Greenhouse effect, Acid rain, Ozone depletion and their consequences on environment, Major air pollution disasters. b) Water pollution: Types of sources and classification of water pollutants, Industrial water pollution, Constituents of aquatic environment, Oxygen contents of water and aquatic life, Oxygen electrode and its use, Mercury pollution and estimation of organomercurials in industrial water, effects of water pollutants on ecosystem.	15lectures
UNIT II	 a) Methods of control of air pollution: Electrostatic precipitation, wet & dry scrubber, filters, gravity and cyclonic separation, Adsorption, absorption and condensation of gaseous effluent. b) Methods of control of waterpollution:water and waste water treatment, aerobic and anaerobic, aeration of water, principle of coagulation, flocculation, softening, disinfection, demineralization and fluoridation. 	15 lectures
UNIT III	Sampling & analysis of air and water pollutants: a) Methods of sampling gaseous, liquid and solid pollutants, Separation of selected Cations & Anions, Analysis of total cationic and anionic burdens of water. Analysis of gases CO, CO ₂ , NO ₂ , SO ₂ , H ₂ S.Analysis of toxic heavy metals Cd, Cr, As, Pb, Cu. b) Pesticide: residue analysis, soil pollution, sources of pesticides residue in the environment, pesticides degradation by natural forces, effect of pesticide residue on life, Analytical techniques for pesticides residue analysis.	15 lectures
UNIT IV	 a) Radiation pollution: Classification & effects of radiation, effects of ionizing radiation on man, effects of non-ionizing radiation on life, radioactivity and nuclear fallout, protection and control from radiation. b) Environmental toxicology: Chemical solutions to environmental problems biodegradability, principles of decomposition for better industrial processes. 	15 lectures

- 1. A.K. De, **Environmental Chemistry**, New Age International Publication, 5th Edition, 2005.
- 2. Wark K. & Werner C., Edited by David and Liptak, **Air Pollution**, CRC press LLC,3rd Edition,2000.
- 3. S.P. Mahajan, **Environmental Pollution Control in Process Industries**, Tata McGraw Hill Publishing Co. Ltd, 2008.

- 4. B.K.Sharma&H. Kaur, Environmental Pollution, Krishna Prakashan Media Pvt Ltd, 2001.
- 5. R.K. Trivedi, P.K. Goyal, Introduction to Air pollution, ABD publisher, 2003.
- 6. P.K.Goyal, **Water Pollution: Causes Effect and control**, New Age International Publication, 2006.
- 7. S. M. Khopkar, Environmental Pollution Analysis, New Age International Publication, 2011.
- 8. C. S. Rao, Environmental Pollution Control Engineering, New Age International, 2007.
- 9. R. Engel, Edited By RydenPowell, Migula Anderson, **Environmental Sciences**, BalticUniv. Publication, 2003.
- 10. Arvind Kumar, Water Pollution, APH Publishing, 2004.

Food Standard Laboratories:

Unit III

- 11. G.S. Sodhi, **Fundamental Concepts of Environmental Chemistry**, Alpha Science, 2nd Edition, 2005.
- 12. S.G. Misra & Dinesh Mani, **Soil Pollution**, APH Publishing Corporation, 2009.
- 13. S.S. Dara, A Textbook of Environmental Chemistry & Pollution Control, S. Chand Ltd, New Delhi, 2006.

SEMESTER-I				
Code:	Title: Drug Laws & Packaging	Credits: 4		
102104				
Objectives:i)T	o understand the basic regulation and legislation of drugs.			
ii) Able to use	prevention of food adulteration .			
iii) To compar	e standards of ISI and AGMARK.			
iv) To identify	better packaging materials based on advantages and limitations.			
v) To promote	good practices to become better professional.			
Paper III		60 Hours		
Unit I	a) Legislation and Regulation of Drug: Pharmaceuticals Act, Drugs			
	and Cosmetics Act 1940, US FDA Requirements, EU requirements,	15Lectures		
	International Conference on Harmonization (ICH) guidelines.			
	b) Prevention of Food Adulteration Act & Rules (PFA 1954): Fruit			
	Product Order, Meat Product Order.			
Unit II	a)Statutory status of pharmacopoeia:Structure of Pharmacopoeia			
	CODEX, Mandatory requirements, Guidelines for license for	15Lectures		
	pharmaceutical industry, Violation of drug laws and statutory			
	punishment.			
	b) Pharmacopoeia: IP, USP, British pharmacopoeia,			
	Europeanpharmacopoeia, National Formulary (NF), Monographs.			

The role of Govt. Authorities, their qualification, duties, powers

15Lectures

	and procedure to be followed.	
	ISI (Indian Standard for Industrial Products), AGMARK	
	(Standardization & grading of Agriculture and allied produce) and	
	other standard for goods & Cosmetic particularly with reference	
	the testing of foods, drug and cosmetic and the raw material	
	concerned.	
	i) Record to be maintained under the Acts	
	ii) Requirements of Quality Control Department for 'WHO'	
	certification, ISO standardization,	
	iii) Implementation process of Accreditation of analytical	
	laboratory.	
Unit IV	a) Packaging materials:Role of packaging material in drug, Food &	
	cosmetic industry, Classification of packaging materials-Glass,	15Lectures
	Metal, Polymer with their advantages and disadvantages; Testing	
	of material for Packing, Legal consideration in Packing.	
	b) Good Practices:Philosophy of Good manufacturing	
	Practices, Good documentation practices (GDP).	
	Concept of good manufacturing practices (CGMP),	
	Concept of good laboratory practices (CGLP).	

- 1. **Handbook on Modern Packaging Industries**, NIIR Project Consultancy Services, Asia Pacific Business Press Inc., 2nd Edition, 2010.
- 2. Edward Baur, Pharmaceutical Packaging Handbook, Publisher Taylor and Francis, 2009.
- 3. G. L. Robertson, Food Packaging Principle & Practice, CRC Press, 3rd Edition, 2012.
- 4. Mehta, Handbook of Drug Laws, University Book Agency Allahabad.
- 5. Govt. of India Publications of Food Drug Cosmetic Acts and Rules.
- 6. Malik Vijay, Laws Relating to Drugs And Cosmetics, Eastern book comp, 23rdEdition, 2013.

PRACTICAL ANALYTICAL CHEMISTRY

Objectives: i) Able to prepare standard solutions of various concentrations.

- ii) To develop skills in volumetric titrations.
- iii) Able to separate and estimate elements by solvent extraction method.
- iv) Able to separate and estimate elements and compounds by chromatographic methods.

Code: 102201	PRACTICAL	4 Credits

Volumetric	Preparation and Standardization of commonly used titrants,	8 Hours/week
Analysis	Acid-base titration, redoxtitration, complexometric titration,	
	Precipitation titration, Non-aqueoustitrations.	
Solvent		
Extraction&	Separation and estimation of elements	
Chromatographic		
Method		

PRACTICAL FOOD AND BIOCHEMICAL ANALYSIS

Objectives: i)Able to analyze milk and milk products.

ii)To compare analysis of tea and coffee.

iii)To develop skills in analytical methods of food products

Code: 102202	PRACTICAL	4 Credits
Food Analysis	Milk and Milk Products, Tea, Coffee, Honey, Preservatives. Jam, Jelly, Squash, Edible Oil, Pickle, Sauce, Vinegar	8 Hours/week

SEMESTER II

Code:	Title: ElectroAnalytical and Spectroscopic Methods	Credits: 4
202101		

Objectives:i)To compare basic concepts of electroanalytical and spectroscopic methods.

- ii) Able to correlate principle and working of different types of instruments used for analysis.
- iii)Able to use these techniques in research and analysis.
- iv) To apply these techniques in the work place.

Paper I		60 Hours
Unit I	Electro Analytical Methods-I a) Potentiometry: Electrodes, electrode systems, Determination of cell Electro Motive Force (EMF), Potentiometric titrations. b) Ion Selective electrodes: solid state, precipitate, liquid-liquid, Enzyme and Gas sensing electrodes with applications, Ion selective field effect transistors, Bio-catalytic membrane electrodes, Enzyme based biosensors.	15 Lectures

Unit II	Electro analytical methods-II	15 Lectures
	a)Polarography: Basic principles, Diffusion current, polarized electrode,	
	Microelectrode, Dropping Mercury Electrode, Ilkovic equation,	
	Polarographic wave, Qualitative, and Quantitative analysis.	
	b)StrippingMethods of analysis.	
	c)Coulometry at controlled potential, coulometric titration	
Unit III	Absorption Spectroscopic methods	15 Lectures
	a)UV-Visible molecular Absorption Spectroscopy: Instrumentation,	
	Absorbing species, Qualitative and Quantitativeanalysis.	
	b)Atomic absorption Spectrometry: Theory of atomic absorption	
	spectrometry, Instrumentation, interferences.	
	c) Molecular IR absorption Spectroscopy: Theory of Infrared	
	Absorption, Spectrometry, Instrumentation, Samplehandling, Qualitative	
	and Quantitative analysis, Fourier Transform Infrared Spectrometry	
	(FTIR).	
Unit IV	Emission Spectroscopic methods	15 Lectures
	a)Molecular Fluorescence spectroscopy: Theory of fluorescence and	
	phosphorescence, variable that affectsfluorescence and	
	phosphorescence. Instruments for measuringfluorescence,	
	phosphorescence, application of fluorescence andphosphorescence.	
	b)Flame emission spectroscopy: Instrumentation, Flame characteristics,	
	Flame processes, EmissionSpectra, Quantitative measurements,	
	Interferences, Applications.	
	c)Turbidimetry and Nephlometry: Theory, Instrumentation,	
	Applications.	

- 1. Skoog D.A., West D.M., Holler and Crouch, Fundamentals of Analytical Chemistry, Cengage Learning, Wiley-VCH Weinheim, 2011.
- 2. J. Mendham, R.C.Denney, J.D.Barnes, M.J.K. Thomas, Vogel's Quantitative Chemical Analysis, Pearson Education, ELBS, 6th Edition, 2009.
- 3.Fifield F.W. and KealeyD, Principle & Practice of Analytical Chemistry, Blackwell Science,5th Edition, 2000.
- 4. Gary D. Christian, Purnendu Dasgupta, Kevin Schug, Analytical Chemistry, John Wiley, 7th Edition, 2013.
- 5. Douglas A. Skoog, F. James Holler and Stanley R. Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th Edition, 2006.
- 6. Ahuja & Jespersen, Modern Instrumental Analysis, Elsevier Science, 1st Edition, 2006.
- 7. D.C. Harris, Exploring Chemical Analysis, W.H. Freeman, 3rd Edition, 2005.
- 8. Edited by Pradyot Patnaik, Dean's Analytical Chemistry Handbook, McGraw Hill, 2nd Edition, 2004.
- 9. Klaus Danzer, Analytical Chemistry, Springer-BBH, 2007.
- 10. A.L. Underwood, Quantitative Analysis, Prentice-Hall of India Pvt Ltd., 1999.

	SEMESTER-II	
Code:	Title:Pharmaceutical Analysis	Credits: 4
202102		

Objectives:i) To identifyactive drug ingredients in drug products.

- ii) To understand dosage form and its mode of administration.
- iii) Able to refer and compare pharmacopoeias for different parameters and analysis.
- iv) To correlate basic concept of QA and QC in pharma industries.

Paper II		60 Hours
UNIT I	Introduction: a) Active Pharmaceutical Ingredients (API) and drug products. b) Dosage form: Brief information on manufacturing and administration-Tablets, Capsules, Injections, Ointments, Creams, Oral solution, Aerosol. c) Control release formulation.	15 Lectures
UNIT II	a) Introduction to Pharmacopoeia and its importance. b) Application of analytical techniques in pharmaceutical industries - Official sources of Impurities and limit test (As, Pb, Fe, Chloride, Sulphate) Techniques of Analysis: Introduction, physical tests, chemical tests, conventional test, Gravimetric, Volumetric Instrumental Techniques: UV-Visible, IR, Flame photometry, Chromatography (TLC,HPLC, GC).	15 Lectures
UNIT III	 a) Assay of main classes of drugs Chemotherapeutic agents: Introduction, Type, Properties, Method of Analysis. b) Dissolution and Disintegration, Assay of drugs, Vitamin C, Vitamin B₂, Aspirin, Ibuprofen, Streptomycin sulphate, Calcium lactate, Iron tablets (Autrin, Fefolcapsule), Laxative substances, Anta-acid. 	15 Lectures
UNIT IV	a) Quality Assurance (QA) - Concept of Total Quality Management, - Documentation and its importance in QA. b)Quality Control (QC) - Change control management, Out of specifications (OOS), Deviation reporting, Stability studies (QA Pharma), Quality control, laboratory responsibilities, routine controls, Calibration of instruments, Standard test procedures.	15 Lectures

Reference Books:

1. Beckett & Stenlake, Practical Pharmaceutical Chemistry Vol (I) (II), CBS Publisher, 4th Edition, 2006.

- 2.V. K. Selvaraj, Practical Pharmaceutical Chemistry, Campus Books International Publisher, 2012.
- 3. Editor J. D. Nally, Good Manufacturing Practices for Pharmaceuticals, CRC Press, 6th Edition, 2006.
- 4. Edited by A. A. Signore and T. Jacobs, Good Design Practices for GMP Pharmaceutical Facilities, CRC Press, 2005.
- 5. Indian Pharmacopeia (Latest Edition)
- 6. British Pharmacopeia (Latest Edition)
- 7. Edited by Allen, Loyd Jr., Remington The Science & Practice of Pharmacy, Publication Pharmaceutical Press, 22nd Edition,2012.
- 8. D.G. Watson, Pharmaceutical Analysis, Churchill Livingstone Publisher, 3rdEdition, 2012.
- 9. Edited by L. Ohannesian and A. Streeter, Handbook of Pharmaceutical Analysis, CRC Press, 2001.
- 10. M. E. Aulton, Dosage Form, Churchill Livingstone Publisher,2nd Edition,2001.
- 11. J. Wiley, Text Books of pharmaceutical Analysis, Connors, 2001
- 12. Higuchi, Chemical Analysis of Drug, Interscience,1995.

	SEMESTER II	
Code: 202103	Title:Cosmetics Formulation & Quality Control	Credits: 4

Objectives: i) Enable to understand processes of cosmetic formulations.

- ii) To comprehend advantages and limitations of raw materials used in cosmetic formulations.
- iii) Able to assess importance of quality control process in cosmetic industries.
- iv) Able to perform analysis of cosmetic formulations for professional growth.

Paper IV		60 Hours
Unit I	a) Introduction, Common processes used for cosmetic	15 Lectures
	formulations, raw materials used in cosmetics.	
	b) Colors: Natural and synthetic, their advantages & limitations.	
	c) Perfumes: Natural and synthetic, their advantages & limitations.	
Unit II	a)Cosmetic formulation:	15 Lectures
	Introduction, Characteristics, BIS standards of:Skin creams, Face	
	Powders, Lipsticks, Shampoos, Manicure preparations, Hair	
	grooming preparations, Nail lacquers, Dentifrices.	
Unit III	a) Herbal Cosmetics products for: Skin, Nails, hairs, dentifrices.	15 Lectures
	b) Test methods for cosmetic products: Contact urticaria, Primary &	
	secondary irritants, Skin sensitivity, Patch, Photo-patch, Repeated	
	insult etc.	

Unit IV	a) Quality control of:	15 Lectures
	Cosmetics raw materials- Goods inspection report, determination	
	of specific microorganisms (Escherichia, salmonella, pseudomonas,	
	staphylococcus etc) and total viable aerobic count (membrane	
	filtration, plate count, serial dilution);	
	Intermediate and bulk finishedproducts–Fineness, texture,	
	apparent density, color shade & match, odor, uniformity of	
	emulsion, softening point, melting range, foam and foam stability.	
	b) Analysis of cosmetics: Face powder (fats and fatty acids, boric	
	acid, zinc, total titanium & iron), Lipstick (separation of waxes and	
	oil & analysis of dyes), Nail enamel (Bismuth Oxy Chloride, free	
	formaldehyde), Shampoo (analysis of nonvolatile matter, borate,	
	sulphate, phosphates, surfactants), Creams (types of emulsion, %	
	water, ash & chloroform soluble material).	

- 1. Edited by Martin M. Reiger, Harry's Cosmeticology, Chemical Publishing Co. Inc,8th Edition, 2009.
- 2. P.P. Sharma, Cosmetics, Formulations, Manufacturing and Quality Control, Vandana Publication Ltd,4th Edition,2010.
- 3. M. S. Balsam & E. D. Sagarin, Cosmetics Science & Technology, Wiley Interscience Publication, 2nd Edition, 2008.
- 4. H. Panda, Herbal Cosmetics, Asia Pacific Business Press Inc., 2008.
- 5. B. M. Mittal & R. N. Saha, Handbook of Cosmetics, Vallabh Prakashan, New Delhi, 2008.
- 6. S. Nanda and R. K. Khar, Cosmetic Technology, Birla Publications Pvt Ltd, 1stEdition, 2006.
- 7. George Latimer, Official Methods of Analysis of AOAC International (AOAC = Associate of Analytical Communities), 19thEdition, Publication AOAC, 2012.
- 8. M. L. Schlossman, Chemistry and Manufacture of Cosmetics, Allured Publishing Corporation, 4th Edition, 2009.
- 9. A. O. Barel, N. Paye, H. I. Maibach, A Handbook of Cosmetics Science and Technology, 3rdEdition, 2009.
- 10. A. Salvador, A. Chisvert, Analysis of Cosmetic Products, Publisher Elsevier, 2011.
- 11. P. Elsner, H. I. Maibach, Cosmeceuticals and Active Cosmetics, Taylor & Francis, 2nd Edition, 2005.

Code: 202104	Title: Research Methodology	Credits: 4

Objectives: i)Participants will be able to work more efficiently with knowledge of basic principles.

- ii) Able to collect data, literature survey for research project.
- iii) Able to use statistical tests for analysis and presentation of data.
- iv)Participant will be better equipped with the knowledge of chemical safety and disaster management to work in research field/industries.

Paper IV		60Hours
Unit I	a) Fundamental Laboratory Techniques: Basic principles, Health and safety, Workingwith liquids, Basic laboratory procedures I & II, Principles of solution chemistry, pH and buffer solutions. b) The investigative approach: Making and recording measurements, SI units (International System of Units) and theiruse, Scientific method and design of experiments, Project work. Collection of Data (primary, secondary), literature survey & review.	15 lectures
Unit II	 a) Analysis and presentation of data: Using graphs, Presenting data in tables, Hints forsolving numerical problems, Descriptive statistics, Choosing and using statistical tests, drawing chemical structures, Chemo metrics, Computational chemistry. b) Statistical Packages for Social Science (SPSS) Workshop. 	15 lectures
Unit III	a) Chemical safety: General safety and operational rules, Safety equipments, Personal protective equipments, Compressed gas safety, Safety practices for disposal ofbroken glassware, Chemicals, Centrifuge safety, Treated biomedical wastes and scientific ethics.	15 lectures
Unit IV	Disaster Management: Emergency response to: Chemical spills, Radiation spills, Biohazard spills, Leakingcompressed gas cylinders, Fires, Medical emergency, Accident reporting (Bhopal gas tragedy, Chernobyl three mile island).	15 lectures

- 1. J. R. Dean, A. M. Jones, D. Holmes, R. Reed, J. Weyersand A Jones, Practical Skills in Chemistry, Pearson Education Ltd. [Prentice Hall], 2002.
- 2. C. R. Kothari, Research Methodology: Methods and Techniques, New Age International, 2013.
- 3. A. K. Singh, Tests, Measurements and Research Methods in Behavioral Sciences, BhartiBhawan Publisher And Distributor, 2012.
- 4. Martyn Denscombe, The Good Research Guide, McGraw-Hill International, 2007.
- 5. Ranjit Kumar, Research Methodology, Sage Publication Ltd, 3rd Edition, 2011.
- 6. Edited by J.C. Taylor, Advances in Chemistry Research, Vol 17, Nova Science Publishers INC, 2013.
- 7. Oklahoma State University Laboratory Safety Manual, 1999.
- 8. Margaret DianeLe Compte, Wendy L. Millroy, Judith Preissle, The Handbook of Qualitative Research in Education, Academic Press Inc
- 9. Bohdan O, Szuprouiez, Multimedia Networking, Mcgraw-Hill

10. Introduction to Research, TynesHillway Houghton Wiffin Company, 2005.

PRACTICAL SPECTROSCOPY AND CHROMATOGRAPHY

Objectives: i) Able to handle colorimetric instrument for analysis. ii) To develop skills in chromatographic techniques for analysis.

Code: 202201	PRACTICAL	4 Credits
Spectroscopy	Colorimetric analysis of elements, Mixture, Simultaneous estimation of metals, pk value of indicator by Spectrophotometry.	8 Hours/week
Chromatography	Chromatography- Ion- exchangechromatography, Thin layer chromatography.	

PRACTICAL PHARMACEUTICAL ANALYSIS

Objectives: i) Able to analyze various drugs by standard methods.

ii)Able to compare dissolution and disintegration test for different drugs.

Code: 202202	PRACTICAL	4 Credits
Pharmaceutical Analysis	Assay of alkaloids, Vitamins, Antibiotics, Sulpha drugs, Anta-acids, Anti-bacterials.	8 Hours/week
	Dissolution test, Disintegration test, Weight variation test, Test for uniformity of content.	

SEMESTER III		
Code: 302101	Title: Advanced Chromatography and Spectroscopic	Credits: 4
	Methods	
Objectives:i)To	comprehend basic concept of chromatographic and spectroscopic	methods.
ii) To correlate	principle and instrumentation of various instruments used.	
iii) Able to compare chromatographic and spectroscopic methods.		
Paper I		60 Hours

Unit I	Column Chromatography I Introduction to column chromatography Gas chromatography:Principle of GLC, Instruments for GLC,Gas ChromatographicColumns and Stationary phases, Applications. Size Exclusion Chromatography: Column packing, Theory of size of exclusion chromatography, Application of size exclusion chromatography.	15 lectures
Unit II	Column chromatography II HPLC:Principle and Instrumentation. Ion Chromatography: Ion exchange equilibria, Ion-exchange packing's, Applications of Ion Chromatography Super Critical Fluid Chromatography:Properties of SFC-Instrumentation and operatingvariables, Comparison with other types of chromatography, Applications.	15 lectures
Unit III	Advanced Spectroscopic Methods I Mass spectrometry: Molecular Mass Spectra, Ion sources, Analyzers, Detectors, Mass Spectrometers, Application of Molecular Mass Spectrometry, Secondary Ion Mass Spectrometry. Atomic Emission Spectroscopy Inductively Coupled Plasma:Principle, Instrumentations and applications. Nuclear Magnetic Resonance:Theory of NMR-Quantum description, Classical description of NMR, Relaxation Processes in NMR. Environmental effects on NMRSpectra-Chemical shift, spin splitting, Rules governing theinterpretation of first order spectra, effect of chemical exchange, NMRSpectrometers, Applications of proton NMR, C-13 NMR.	15 lectures
Unit IV	Advanced Spectroscopic Methods II Raman spectroscopy:Theory of Raman spectroscopy, Instrumentation, Application. Hyphenated Methods: Gas Chromatography – Mass Spectrometry (GC-MS), Gas Chromatography – IR Spectrometry (GC-IR), Liquid Chromatography – Mass Spectrometry (LC-MS), Tandem Mass Spectrometry (MS-MS), Inductively Coupled Plasma – Mass Spectrometry (ICP-MS).	15 Lectures

1. Skoog D.A., West D.M., Holler and Crouch, Fundamentals of Analytical Chemistry,

Cengage Learning, Wiley-VCH Weinheim, 2011.

- 2. J. Mendham, R.C.Denney, J.D.Barnes, M.J.K. Thomas, Vogel's Quantitative Chemical Analysis, Pearson Education, ELBS, 6th Edition, 2009.
- 3.Fifield F.W. and Kealey D, Principle & Practice of Analytical Chemistry, Blackwell Science,5th Edition, 2000.
- 4. Gary D. Christian, Purnendu Dasgupta, Kevin Schug, Analytical Chemistry, John Wiley, 7th Edition, 2013.
- 5. Douglas A. Skoog, F. James Holler and Stanley R. Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th Edition, 2006.
- 6. Ahuja & Jespersen, Modern Instrumental Analysis, Elsevier Science, 1st Edition, 2006.
- 7. D.C. Harris, Exploring Chemical Analysis, W.H. Freeman, 3rd Edition, 2005.
- 8. Edited by Pradyot Patnaik, Dean's Analytical Chemistry Handbook, McGraw Hill, 2nd Edition, 2004.
- 9. Klaus Danzer, Analytical Chemistry, Springer-BBH, 2007.

SEMESTER III		
Code: 302102	Title:Organic Analysis	Credits: 4

Objectives: I)Tocomprehend spectroscopic methods for characterization of organic compounds.

- II) Able to identify spectra for structure elucidation.
- III) To compile implication of significance and application of carbon Nanotubes.
- IV) Able to correlate importance of organic synthesis.

Paper II		60 Hours
Unit I	a) UV-visible Spectroscopy: Introduction, Electronic	15 Lectures
	transitions, Applications, Calculation of λ max.	
	b)IR-Spectroscopy: Basic concept, Fundamental	
	vibrations, Functional group frequencies, Identification of	
	organic compounds.	
Unit II	a) HNMR: Use of HNMR for characterization and	15 Lectures
	structural elucidation of organic compounds and	
	interpretation of spectra.	
	b) CNMR: Use of CNMR for characterization and structural	
	elucidation of organic compounds and interpretation of	
	spectra.	
	c)Mass Spectroscopy: Ionization on electron impact, Mass	
	Spectrum, detection of isotopes, Fragmentation and	
	spectra of few classes of compounds.	

10. A.L. Underwood, Quantitative Analysis, Prentice-Hall of India Pvt Ltd., 1999.

Unit III	a) Functional group analysis: Introduction, principles&	
	methods of analysis.	15 Look
	b)Nanotechnology: Introduction; Carbon nanotubes:	15 Lectures
	Significance, Preparative methods, Types SWNT, MWNT	
	and applications. Nanomaterials.	
Unit IV	a) Organic synthesis: Principles of organic synthesis,	15 Lectures
	Wacker process, Ziegler Natta, Grignard Reaction,	
	Williamson Synthesis.	
	b) Organic trace analysis: Introduction, Units, Sampling,	
	Concentration techniques and estimation methods.	
	c) Micro-elemental analysis of C,H,N,O and halogens.	

- 1. Donald L. Pavia, Jeorge S. Kriz, James R. Vyvyan, Spectroscopy by Lampmen, Cengage Learning India Pvt Ltd, 4th Edition, 2012.
- 2.R. A. Sheldon, Isabella Arends, ULF Hanefeld, Green Chemistry & Catalyst, Wiley VCH Verlag GmBH and Company, 2007.
- 3. J.H. Clark, D.J. Macquarrie, Handbook of Green Chemistry and Technology, John Wiley & Sons, 2008.
- 4. Sulbha K. Kulkarni, Nanotechnology Principles and Practices, Capital Publishing Company, 2007.
- 5.A.I. Vogel, Elementary Practical Organic Chemistry: Small Scale Preparations Part I, Dorlin Kindersley India Pvt. Ltd., 2011.
- 6. Edited by M. B. Smith, March's Advance Organic Chemistry, John Wiley & Sons, 7th Edition, 2013.
- 7. P. S. Kalsi, Spectroscopy of Organic Compounds, New Age International, 6th Edition, 2004.
- 8. Mzike Lancaster, Green Chemistry an Introductory Text, Royal Society of Chemistry, 2002.
- 9. R. M. Silversteime and G. C.Bassler, Spectrometric Identification of Organic Compounds, Johan Wiley Publication, 1991.
- 10. S. Siggia and J.G. Hanna, Quantitative Organic Analysis Via Functional Groups, Wiley Interscience, 1979.
- 11. Harald Gunther, NMR Spectroscopy, Wiley –VCH Weinheim, 2013.

SEMESTER III

Code: 302103	Title: Microbiological Methods of Analysis	Credits: 4

Objectives:1)Toidentify microorganism based on their morphology.

- ii)To prepare various culture medium for different microorganisms.
- iii) Able to use various methods of staining for microorganism.
- iv)Able to compare sign and symptoms of food,water,air borne diseases.
- v)To use methods of precaution for air, water and food borne diseases.

Paper III		60 Hours
Unit I	 a) Introduction of Microorganisms: General Characteristics of Algae, Protozoa, Mycoses, Pathogens, Pyrogens, Molds, Fungi, Yeasts and Parasites. b) Staining method: Gram staining, Acid-base staining, Staining of spores, Staining of bacterial spores. 	15 Lectures
Unit II	a) Viruses: Introduction to viruses, Classification, Replication cycle, Effects of viruses on the host cell, Viruses of medical importance, Rubella viruses infection, Laboratory test for Polioviruses, Lentiviruses and AIDS (Acquired Immunodeficiency Syndrome), Detection tests for HIV (Human Immunodeficiency Virus). b) Bacteria: Introduction to bacteriology, Basic features of bacteria, Classification,	15 Lectures
Unit III	Shape and structure of bacteria, Factors affecting growth of bacteria. a) Culturing of Microorganism Introduction, Composition and types of culture media, Preparation of culture media, Quality control of various culture media. b) Control of microorganism Control of microorganisms by chemical agents, Characteristics of an ideal chemical agents, Major groups of disinfectants and antiseptics, Evaluation of antimicrobial potency of disinfectants and antiseptics.	15 Lectures
Unit IV	a) Food borne diseases: Bacteria responsible for food borne diseases, Signs and Symptoms of bacterial infection, Antibacterial drugs. b) Water-borne diseases: Microbiology of drinking water, Microorganism responsible for water borne diseases, Signs & Symptoms c) Airborne diseases: Air borne diseases and microorganism, Signs& symptoms	15 Lectures

Reference Books:

1. Godkar P.S. and Godkar D.P., Textbook of Medical Laboratory Technology,

Bhilani Publishing House, 2nd Edition, Mumbai, 2006.

- 2. Chatterjea M.N. & Shinde R., Textbook of Medical Biochemistry, J. P. Brothers Medical Publishers PVT, New Delhi, 8th Edition, 2012.
- 3. Jindal Meenakshi, Introduction to Waste Water Treatment Process, Mangalam Publication, Delhi, 1st Edition, 2009.
- 4. Jay James, Modern Food Microbiology, CBS Publisher & Distributor, 2005.
- 5. K. Vijya Ramesh, Food Microbiology, MJP Publisher, Chennai, 2007.
- 6. Pelczar M., Chan E.C. S., Krieg Noel R., Microbiology, Tata McGraw Hill, New Delhi, 2003.
- 7. Doyle M., Beuchat L., Food Microbiology, Fundamentals and Frontiers, Montville ASM Press Washington D.C., 2013.
- 8.Prescott, Harley and Klein, Textbook of Microbiology, Mc-Graw Hill,7th Edition,2008.
- 9. A. Anantnarayan and C. K. Panikar, Textbook of Microbiology, Orient Longman Pvt.Ltd.,7th Edition, 2005.

	SEMESTER III	
Code: 302111	ELECTIVE I: Industrial Product and Forensic Analysis	Credits: 4

Objectives:i) To familiarize importance of industrial products.

- ii) To compare content analysis of different types of steel, cements and ceramics.
- iii) To acquire knowledge of surfactants as pollutant.
- iv) To comprehend soil and fertilizer analysis.
- v) To compare forensic analysis of blood and hair.

Paper IV		60 Hours
Unit I	Analysis of Steel & Cement	15 Lectures
	a) Analysis of Steel and Ferrous materials: Sampling, Analysis of	
	steel and ferrous alloy: Carbon, Silicon, Manganese,	
	phosphorous, sulphur, nickel, chromium, vanadium, tungsten,	
	molybdenum, cobalt, titanium.	
	b) Analysis of Cement and building materials: Type of cement,	
	Sampling, Analysis of Cement and building materials: Silicon	
	dioxide, aluminium oxide, ferric oxide, calcium oxide,	
	magnesium oxide, sulphur trioxide, sulphide-sulphur, loss on	
	ignition, insoluble residue, sodium and potassium oxide.	

Unit II	Analysis of Ceramic materials:	15 Lectures
	a)Analysis of quartz: Volatile residue, Zirconium dioxide,	
	Aluminium oxide, Calcium and magnesium oxides, Sodium and	
	potassium oxide.	
	b)Analysis of Clays and feldspars: Determination of moisture,	
	Silicon dioxide, Total oxides, Ferric oxides, Titanium dioxide,	
	Aluminium oxide, Calcium oxide, Magnesium oxide.	
	c)Analysis of glasses: Types of glasses, determination of lead	
	and lead glass.	
	d)Analysis of ceramics: Determination of Titanium dioxides,	
	and Aluminium oxide from oxide ceramics.	
	e)Analysis of ferrous slags: Determination of iron, calcium and	
	magnesium, total oxides.	
Unit III	Analysis of other products	
	a) Surfactants and Detergents: Introduction to different	15 Lectures
	pollutants, Classification, Representative methods of analysis. b)Effluent water analysis: Introduction to different pollutants,	13 Lectures
	Classification, Representative methods of analysis.	
	c)Soil and fertilizer analysis: Characteristic of different soils,	
	Classification, Representative methods of analysis of soil	
	parameters, pH texture, Water retaining capacity, Sodium	
	Absorption Ratio (SAR) value, NPK value of fertilizers.	
Unit IV	Forensic Science	
	a) Forensic Analysis: Overview, destructive & nondestructive techniques, data interpretation.	15 Lectures
	b) Blood Analysis: Blood preservation and ageing effect,	
	analysis of blood components & exogenic substances, blood	
	stain analysis.	
	c) Hair analysis: Structure and composition of hair,	
	Morphological examination, Chemical analysis of hair	
	components & components remaining on or in hair.	

- 1. F.J. Welcher, Standard Methods of Chemical Analysis, Vol. 2, (Part A & B), Von Nostrand & Rober E. Krieger Publishing Co. New York, 5th Edition, 2000.
- 2. Edited by J. Mendham, R. C. Denney, M. Thomas, B. Sivasankar, Vogel's Quantitative Chemical Analysis, Dorlin Kindersley (India) Pvt. Ltd, 6th Edition, 2009.
- 3. William D. Callister Jr., D. G. Rethwisch, Fundamentals of Materials Science & Engineering, John Wiley and Sons. Inc., New York, 4th Edition,2012.

- 4. Suzanne Bell, Forensic Chemistry, Pearson Education Publishers, 2nd Edition, 2012.
- 5. Lwrance Kobilinsky, Forensic Chemistry Handbook, Wiley Interscience, 2011.
- 6. J. I. Khan, T. J. Kenedy, D. R. Christian, Basic Principles of Forensic Chemistry, Humana Press, 2011.
- 7. Robert A. Meyers, Encyclopedia of Analytical Chemistry, Wiley Interscience, 2012.
- 8. V. Raghavan, Material Science & Engineering, PHI Learning Pvt Ltd Publisher, 5th Edition, 2004.
- 9. Thomas M. Schmitt, Analysis of Surfactants, Marcel Dekker Inc, 2nd Edition, 2001.

	SEMESTER III	
Code: 302112	ELECTIVE II: Medicinal Chemistry	Credits: 4
Objectives: i) T	o familiarize students with various types of medicines.	
ii)Able to comp	are mode of administration and bioavailability of drugs.	
iii)To comprehe	end different types of antibiotics and sulpha drugs.	
iv)To compare	drugs acting onCNS.	
v) To compile d	lrugs action and toxic effects of steroids.	
Paper IV		60 Hours
UNIT I	General consideration of following drugs: The development of the	15 Lectures
	following classes of drugs including structure activity relationship,	
	mode of action and mechanism of action of drugs in that class,	
	mode of administration, bioavailability and its relation to	
	structure, chemical nomenclature, generic names and toxic	
	effects.	
	1. Antiseptic and disinfectants	
	2. Chemotherapeutic agents; thermotherapy of acid fast infection	
	(Anti-tubercular and anti-leprotic agents)	
	3. Chemotherapeutic agents of parasitic infection, antimalarials,	
	anti-amoebic, anti-trypanosomiasis and antihelmintic agents	
	4. Antifungal agents	
	5. Anti-viral agents	
	6. Anti-neoplastic agents.	
UNIT II	1. Antibiotics	15 Lectures
	2. Sulphonamides	
	3. Diuretics	
	4. Hypoglycemic agents	
	5. Diagnostic agents and pharmaceutical aids	
	6. Miscellaneous drugs like anticoagulants and antilipemic agents.	
UNIT III	Drugs acting on central nervous system:	15 Lectures
	1. General anesthetics, hypnotics and sedative anti-convulsants	
	2. Analgesics: narcotic agents	
	3. Anti-pyretic, anti-rheumatics and anti-inflammatory agents	
	4. CNS Stimulants	

	5. Psychotherapeutics agents; major and minor tranquilizers, anti-	
	depressant	
	6. Local anesthetics	
UNIT IV	Drugs acting on nervous system:	15 Lectures
	1. Cholinergic stimulants and blocking agents	
	2. Adrenergic stimulants and blocking agents	
	3. Hypotensive agents and cardiovascular drugs	
	4. Vitamins and co-enzyme	
	5. Antihistamines	
	6.Corticosteroids, sex steroids, oral contraceptives and synthetic	
	estrogens.	

- 1. Edited by Donald J. Abraham, Burger's Medicinal Chemistry and Drug Discovery, 7th Edition, Wiley Publication, 2010.
- 2. Thomas L. Lemke, David A. Williams, V. Roche & S.W. Zito, Foye's Principles of Medicinal Chemistry, Published by Lippincott Williams & Wilkins, 7th Edition, 2012.
- 3. Gareth Thomas, Medicinal Chemistry, Wiley Interscience Publication, 2nd Edition, 2011.
- 4. V. Alagarsamy, Textbook of Medicinal Chemistry, Reed Elsevier India Pvt. Ltd, 2010.
- 5. G. P. Elllis & G.B. West, Progress in Medicinal Chemistry, Vol 9, North Holland Publishing Co., 2011.
- 6. D. Sriram & P. Yogeeswari, Medicinal Chemistry, Publisher Dorling Kindersley (India) Pvt. Ltd, 2008.
- 7. Grahm L. Patrik, An Introduction to Medicinal Chemistry, Oxford University Press, 5th Edition, 2013.
- 8. AshutoshKar, Medicinal Chemistry, Lippincott Williams & Wilkins, 2007.
- 9. Hugo Kubinyi, QSAR: Hansch Analysis and Related Approaches, Wiley Interscience Publication, 2008.
- 10. Dr. S. S. Kadam, Principles of Medicinal Chemistry, Pragati Books Pvt Ltd, 2008.

SEMESTER III		
Code: 302113	ELECTIVE III:Biosensors, Agrochemicals& Organic Polymers	Credits: 4
Objectives:i) To	understand basic concept of biosensors and their applications.	
ii)To identify di	fferent types of agrochemicals and their analysis.	
iii) To study synthesis and analysis of organic polymers .		
Paper IV		60 Hours
UNIT I	Biosensors:	15 Lectures
	Definition, components and types of Biosensors.	
	Enzyme based Biosensors.	
	Immobilization of Enzymes.	
	Types of Transducers, fabrication of probes for sensors and	
	evaluation of sensor performance.	

	Application of Biosensors.	
UNIT II	Analysis of Agrochemicals: Introduction, Classification, Mechanism of action and synthesis. Insecticides: DDT (Dichloro Diphenyl Trichloro Ethane), BHC (Benzene Hexa Chloride), Aldrin, Endosulfon, Malathion, parathion. Herbicides: 2,4-dichloro phenoxy acetic acid, Dalapon, Paraquat, Banalin, Butacarb.	15 Lectures
	Fungicides: Bordeaux mixture, Copper oxychloride, Zineb, Benomyl (Benlate). Analysis of pesticides residue and toxicological effects.	
UNIT III	Organic Polymers: Basic Concepts, Polymers, monomers, molecular weight and molar mass, end groups, degree of polymerization. Nomenclature Classification of polymer-thermoplastic, thermosetting. Copolymers – random, alternate, block and graft copolymers, Molecular architecture, Polymerization and functionality. Polymerization processes – addition and step polymerization. Mechanism of polymerization – free radical and ionic. Heterogeneous polymerization – Zeigler-Natta catalysis. Optical Activity in polymers, stereo isomers-isotactic, atactic and syndiotactic polymers.	15 Lectures
UNIT IV	Analysis of Polymers: Molecular weight of polymers - Arithmetic weight average and number average molecular weights of polymers. Determination of molecular weight of polymers, End-Group analysis, Cryoscopy, Light scattering, Viscosity, and gel permeation chromatographic methods. Thermal Transition in Polymers, Tg and Tm and their relation, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Spectral method of analysis.	15 Lectures

- 1. V. C. Yang, T.T. Ngo, Biosensors and Their Applications, Kluver Academic Publisher Newyork, 2000.
- 2. Rajmohan Joshi, Biosensors, Isha Books India, 2006.
- 3. J. J. Murphy, Handbook of Residue Analytical Methods for Agrochemicals by Wiley Interscience Publication, 2003.
- 4. Edited by Q. A. Acton, Agrochemicals: Advances in Research & Application, Scholarly Editions Book, 2012.
- 5. W. Brown, C. Foote, I. Iverson, E.Anslyn, Organic Chemistry (Organic Polymers), Cengage Learning Publisher, 2008.

- 6. F.W. Bilmayer, Text Book of Polymer Science, Wiley India Pvt. Ltd., 2008.
- 7. V. K. Ahluwalia, A. Mishra, Polymer Science A Text Book, Taylor and Francis Group Publisher, 2008.
- 8. Manas Chanda, Introduction to Polymer Science and Chemistry, CRC Press (Taylor and Francis Group), 2nd Edition, 2013.
- 9. S. J. Knowles, Quantitative Analysis of Agrochemicals by Spectroscopy Technique, University of Reading Publisher, 1996.
- 10. A. Townshed, Encyclopedia in Analytical Science, Academic Press, 1995.

PRACTICAL ADVANCED SPECTROSCOPIC METHODS

Objectives: i) To compare different methods of spectroscopic analysis.

ii) To develop skills in flame photometry and fluorimetry instruments.

Code: 302201	PRACTICAL	4 Credits
Advanced spectral methods UV spectroscopy Fluorimetry	Spectroscopic determination of elements, Standard addition methodand method of least squares, extractive photometry, photometrictitration. Fluorometric determinations of organic compounds by	8 hours/week
Flame photometry	Calibration curve, standard addition method. Flame photometric determination of alkali metals by calibration curve method.	

PRACTICAL ORGANIC ANALYSIS

Objectives:i)Todevelop skill in identification of organic compounds on the basis of their spectra.

ii) Able to estimate organic compounds on the basis of functional groups.

Code: 302202	PRACTICAL	4 Credits
Identification &Estimation of Functional Groups	Identification: Alcoholic, phenolic carbonyl, carboxylic, ester, nitro, amino group, amide group, degree of unsaturation, hydrocarbons, olefins using sample spectra. Estimation: Amines, phenols, aldehydes, ketones, Ester, amide, Carboxylic compounds.	8 hours/week

SEMESTER IV

Code: 402101	Title: Advanced Analytical Techniques	Credits: 4

Objectives:i) To understand basic concepts of advanced analytical techniques.

- ii) To comprehendprinciple and instrumentation of advanced analytical techniques.
- iii)To understand role of computers in analytical chemistry.
- iv)To apply the concepts of green chemistry to analytical chemistry for better environment.

Paper I		60 Hours
Unit I	Advanced Electro-analytical methods a) Amperometric Titrations: Principle, Instrumentation, titration curves. Biamperometric Titrations: Principle, instrumentation, titration curves. b) Modified Polarographic Methods: Differential Pulsed polarography, Square Wave Polarography, Cyclic voltammetry.	15 Lectures
Unit II	Thermal & Radioactive methods of analysis a) Thermal methods: TGA:- Principles, Instrumentation, Application DTA:- Principles, Instrumentation, Application DSC:- Principles, Instrumentation, Application Thermometric Titrations b) Radio analytical Methods: Radioactive decay products and processes, Radioactive decay rates, Instrumentation. Neutron activation method:- Destructive, non-destructive. Applications of Neutron Activation. c) Isotope dilution method:Principle, Applications. Photo Acoustic Spectroscopy (PAS): Photo acoustic effect, theory of PAS, Instruments, Applications.	15 Lectures
Unit III	Surface Analytical Techniques a) Surface spectroscopic methods: Electron Spectroscopy for Chemical Analysis (ESCA) - Principles, Instrumentations, Applications. b) Auger electron spectroscopy: Principles, Instrumentations, Applications. c) Scanning Electron Microscopy: Principles, Instrumentation, Applications. d) Computers in Analytical chemistry: Computer terminology, Components of computer, Computer software-Scientific packages, Applications of computers-	15 Lectures

	Passive andActive, Computers networks, Lab Information Management System (LIMS).	
Unit IV	Green Analytical Methods: Principle & concept, Atom	15 Lectures
	economy, and trends in Green Analytical chemistry,	
	Greening sample treatment, Green Instrumental Analysis.	

PRACTICAL ADVANCED ANALYTICAL TECHNIQUES

Objectives:i)To develop skill inconductometry, pHmetry and thermometry for analysis of acids and bases.

- ii) Able to analyze different parameters for water analysis.
- iii)To analyze cosmetic raw materials.

Code: 402202	PRACTICAL	4 Credits
Conductometry	Conductometric titration of acids, bases, mixture of acids.	8 hours/week
pHmetry	pH metric titration of mixture of acids and selection of indicators for volumetric titration, pH metric titration of polybasic acids.	
Thermometric titrations	Thermometric titrations of acids/bases	
Water analysis	Water Analysis of samples for hardness, dissolved	
	oxygen, residual chlorine content,	
Cosmetic analysis	Analysis of Cosmetics intermediates.	

- 1. Skoog D.A., West D.M., Holler and Crouch, Fundamentals of Analytical Chemistry, Cengage Learning, Wiley-VCH Weinheim, 2011.
- 2. J. Mendham, R. C. Denney, J. D. Barnes, M.J.K. Thomas, Vogel's Quantitative Chemical Analysis, Pearson Education, ELBS, 6th Edition, 2009.
- 3.Fifield F.W. and Kealey D, Principle & Practice of Analytical Chemistry, Blackwell Science,5th Edition, 2000.
- 4. Gary D. Christian, Purnendu Dasgupta, Kevin Schug, Analytical Chemistry, John Wiley, 7th Edition, 2013.
- 5. Douglas A. Skoog, F. James Holler and Stanley R. Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th Edition, 2006.
- 6. Ahuja & Jespersen, Modern Instrumental Analysis, Elsevier Science, 1st Edition, 2006.
- 7. D.C. Harris, Exploring Chemical Analysis, W.H. Freeman, 3rd Edition, 2005.
- 8. Edited by Pradyot Patnaik, Dean's Analytical Chemistry Handbook, McGraw Hill, 2nd Edition, 2004.
- 9. Klaus Danzer, Analytical Chemistry, Springer-BBH, 2007.

- 10. A.L. Underwood, Quantitative Analysis, Prentice-Hall of India Pvt Ltd., 1999.
- 11. M. Koel & M. Kaljurand, Green Analytical Chemistry, RSC Publishing, 2012.
- 12. M. L. Guardia, S. Carrigues, A Handbook of Green Analytical Chemistry, Wiley Interscience, 2012.

Code: 402301	RESEARCH PROJECT	8 Credits (9 wks)	Ì

Objectives:i) Able to collect data and literature survey.

- ii) Able to use statistical aids for data processing.
- iii) Acquire knowledge and skills for higher level research work.

Research Project& Evaluation:

Students will be given guidance on basic research approaches, methodology and tools; and expected to collect data (primary, secondary), conduct literature survey and complete a small research project in the institution or industries.

After completion of research study, each student will submit the report of 50-60 pages (12,000 to 15,000 words). The chapter wise indexing and typing rules will be the same as of thesis writing.

Each report will be evaluated by the guide and external referee. Evaluation of research project will be conducted internally and externally.

Code: 402302	IN-PLANT TRAINING	8 Credits (6 wks)

Objectives: i) The intern will develop skills in the analytical techniques in practical work situation.

- ii) Intern will develop and strengthen their professional skills and interpersonal relationship in work environment of the industry.
- iii) It will provide opportunity to find out their interest in a particular carrier.
- iv)Experiential learning will have broader perspective for employment.

In-plant Training & Evaluation:

Internship placement will be in research institutes, industries like pharma, food and cosmetic or Government organization (BARC or Haffkine Institute), subject to approval of the internship coordinator. Student will prepare a detailed plan with the approval of external mentor which

will be submitted to the internship coordinator within 7 days of the joining. At the end of internship, student will prepare a write up (2000 to 3000 words) based on their daily work activities in the organization. Evaluation of the internship assignment will be done internally and externally.

First to Fourth Semester

Question Paper Pattern for Theory

Time: 3 Hrs Marks: 100(Converted to 50 Marks)

Note: All Questions are Compulsory

Q.1 Attempt any TEN of the following Objective Ques. --- 20 Marks

15 questions from Unit I, II, III& IV.

Q.2 Attempt any TWO of the following --- 20 Marks

Four questions from Unit I.

Q.3 Attempt any TWO of the following --- 20 Marks

Four questionsfrom Unit II.

Q.4 Attempt any TWO of the following --- 20 Marks

Four questions from Unit III.

Q.5 Attempt any TWO of the following --- 20 Marks

Four questions from Unit IV.

First to Fourth Semester

Question Paper Pattern for Practical(internal/external)

Lab Course Time: 4 Hrs.

Marks: 50

Q.1	Synopsis of Experiment	05Marks
Q.2	Experiment	30 Marks
Q.3	Viva	10 Marks
Q.4	Record Book	05 Marks